
Correlation analysis of seizure detection features
# L. Kuhlmann 1, M. J. Cook 2,3, K. Fuller 2, D. B. Grayden 1,3, A. N. Burkitt 1,3, I.M.Y. Mareels 1

1 Department of Electrical and Electronic Engineering, University of Melbourne
Melbourne, Victoria, Australia

2 St. Vincent’s Hospital, Melbourne, Victoria, Australia
3 The Bionic Ear Institute, Melbourne, Victoria, Australia

#levink@unimelb.edu.au

Abstract

Automated seizure detection is important for speeding up
epilepsy diagnosis or for controlling an implantable brain
stimulator to avert seizures. Various features calculated from
the electroencephalogram (EEG) can be used to detect
seizures, and combining features can give superior detection
performance. This paper investigates the correlation between
seizure detection features in order to determine which ones
should be combined for the purposes of seizure detection.
Combinations of three features involving relative average
amplitude, relative scale energy, coefficient of variation of
amplitude, relative power, relative gradient and bounded vari-
ation tended to show the lowest correlations.

1. INTRODUCTION

Epilepsy is a debilitating disorder affecting millions of people

world wide and is defined by recurrent seizures. These seizures

involve hyper-active hyper-synchronous brain activity and can

affect the behaviour of an epilepsy sufferer in different ways.

Seizures are often investigated using EEG recordings of brain

activity. Automated seizure detection applied to the EEG is

important for keeping records of seizure times from long

EEG recordings so that neurologists can rapidly inspect the

detected seizures and gain diagnostic information based on

the EEG recordings of seizures [1], [2], [3]. Seizure detection

is also important for the activation of an implantable electrical

stimulation device that can be used to control or avert seizures

[4]. Certain individual features, such as changes in ampli-

tude, frequency content or signal variation, calculated from

the EEG can be useful for detecting seizures [3]. However,

combinations or voting of different features can usually give

the best seizure detection performance. This paper investi-

gates 9 different seizure detection features calculated from

scalp EEG: relative average amplitude (RAA), relative scale

energy (RSE), coefficient of variation of amplitude (CVA),

relative power (RP), bounded variation (BV), mean of the

average cross-correlation function (MXC), relative gradient

(RG), relative bounded variation (RBV), and relative mean

of the average cross-correlation function (RXC). Statistical

correlation analysis is applied to determine which of these

features are correlated with each other in order to determine

which feature combinations are likely to complement each

other for the purposes of seizure detection.

2. METHODS

A. Data Selection

Long-term continuous scalp EEG data were recorded from

a variety of epilepsy patients using a Compumedics E-series

EEG system (Compumedics, Melbourne, Australia) and sam-

pled at 512 Hz after bandpass filtering between 0.15 and 105

Hz. To reduce computation time the signal was downsampled

to 200 Hz, using a 66.6 Hz low pass anti-aliasing filter. The

data were then filtered with a high pass filter (2 Hz) and a low

pass filter (30 Hz). A longitudinal bipolar montage was also

used to reduce 21 recording channels down to 16. The data set

was 367 hours in duration, and contained 58 clinical seizures

from 14 patients. All clinical seizures from all patients were

included as seizure data, and the rest of the data was labelled

as non-seizure. Clinical seizure onsets and offsets were defined

based on visual inspection of combined video and EEG data.

In general, information about the periods during which the

patients were awake or asleep were not available. Recording

durations for each patient ranged from 4.5 to 65.5 hrs. As

a result, data from both asleep and awake periods was not

available for all patients. The shorter recordings correspond to

awake periods, hence there is some bias towards awake data.

However, only 4 out of 14 patients in the training set had

recordings less than 15.8 hrs in duration.

B. Electrode Artifact

For a given channel, epochs were ignored if they contained 1

of 3 possible symptoms of electrode failure: (1) Abnormally

high signal amplitude (> 1000μV) caused by movement of

the electrode or amplifier disconnection and reconnection; (2)

50 Hz activity above 300μV (measured by spectral analysis);

(3) An effect characterized by a phase reversal in channels

containing the same loose electrode. The channels are added

and the mean absolute amplitude of their sum is compared to

the mean absolute amplitude of the first of the two channels.

The epoch is rejected if the mean absolute amplitude of the

sum is less than half of the mean absolute amplitude of the

first channel, signifying that the two original channels are of

similar amplitude and of opposite polarity.

C. Feature Calculation

The frequency content of seizures is significant in the 3-50 Hz

range [3]. Thus analysis of the features was performed on a

wavelet decomposition of the EEG signal into 5 frequency
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bands: 50-100, 25-50, 12-25, 6-12, and 3-6 Hz. This was

achieved using a 5-level wavelet transform with a Daubechies-

4 wavelet [5], [6], [7], computed separately on each 2s

epoch of data in each channel. The feature time-series were

median filtered with a 6s window to remove outliers. The

nine characterizing measures for the EEG are defined in the

following sections.

1) Relative Average Amplitude (RAA): The RAA is the

ratio of the mean peak-to-peak amplitudes in the current 2s

epoch to the mean peak-to-peak amplitudes in the background.

The background is defined as a 30s block ending 1 min before

the last epoch, thus the background is updated for each new

epoch. The EEG waveforms are first wavelet transformed,

then for each wavelet band signal, the segment decomposition

method of [8] breaks the waveform into segments, where a

segment is defined as a single line connection between two

local extrema in the waveform. These segments are then used

to determine the peak-to-peak (i.e. max-to-min or min-to-max)

amplitudes. Temporal continuity is maintained in the segment

decomposition by using the last segment peak of an epoch as

the first segment peak of the following epoch.

To compute the mean peak-to-peak amplitudes in the back-

ground, the mean peak-to-peak amplitudes computed over the

last 45 windows (i.e. last 90s) were buffered. The average of

the first 15 elements of the buffer, corresponding to the data

block of 30s ending 1 min before the previous epoch, was

then taken.

2) Relative Scale Energy (RSE): RSE is defined as the

ratio of the energy in the coefficients in a given scale to the

energy of the wavelet coefficients in all scales. It serves as a

measure of rhythmicity as a sustained elevated value in one

scale indicates a somewhat constant frequency in the signal.

Energy for the discrete wavelet transform band (or scale) i is

given as [9]:

e(i) =
Ni∑

k=1

D2
ik

Δt

Ni
, (1)

where Ni is the number of wavelet coefficients present in band

i, Dik are the coefficient values in band i, and Δt is the 2s

epoch length.

The RSE is then given by [9]

er(i) =
e(i)∑M

j=1 e(j)
, (2)

where M is the number of wavelet bands, and e(i) is the

energy of the ith band.

3) Coefficient of Variation of Amplitude (CVA): The CVA

of amplitude is defined as the square of the ratio of the standard

deviation, σ, to the mean, μ, of the peak-to-peak amplitudes

(i.e CV A = σ2

μ2 ). The waveform segment decomposition

method [8] described in section 2-C.1, is used to compute the

peak-to-peak amplitudes of a given window for each wavelet

band. The CVA of amplitude serves as a measure of the

variability of the signal amplitude. A low value indicates little

variation which should coincide with seizures which are more

‘periodic’, and hence less variable, than normal EEG.

4) Relative Power (RP): RP is a feature based on the

Osorio-Frei method of seizure detection [10], [11], [12] where

the power of the EEG signal in the foreground window is

normalized by the power in a background window with an

exponentially decaying memory. For each wavelet band signal

the foreground power is defined as the median of the set

of squared signal samples over the current 2s epoch. These

foreground values, F (i) are buffered over the past 4 minutes.

The background power for the current window is defined as

follows:

B(i) = (1 − λ)median{F (i − 1), ..., F (i − 120)}+
λB(i − 1), (3)

where i is the index of the current epoch and λ = 0.999230.

The final feature value is then given by

RP (i) =
FG(i)
BG(i)

. (4)

The main difference between this feature and that used by [11]

is that here coarser sampling of the RP is being employed

with non-overlapping 2 second epochs. In addition we are

evaluating RP on the different wavelet bands specified in this

paper, whereas [11] evaluate RP on a signal filtered by a 5-

45 Hz band-pass Daubechies-4 wavelet. In a similar way to

[11], the decay factor for the background λ has been specified

to ensure a 30min half-life of background contributions to

the background measure of power. As a result λ takes on

a slightly different value to what [11] use because of the

different windowing method employed.

5) Bounded Variation (BV): BV is a normalized measure

of curve length within a given window [13], and is computed

for each wavelet band of each channel. BV gives high values

when the signal has high amplitude and rapid variation, and

low values when the signal has low amplitude and slow

variation. When ictal periods are slower than interictal periods,

but have similar amplitudes, BV will be lower in the ictal

periods. When ictal periods are slower than interictal periods,

but have larger amplitudes, BV can be larger in the ictal

periods. BV is defined as:

BV =
∑T

t=2 |x(t) − x(t − 1)|
maxtx(t) − mintx(t)

(5)

where the sum is over the absolute difference between adjacent

samples of the wavelet band signal x(t), and essentially

provides the curve length. The parameter T is the total number

of samples in the window. The denominator acts to normalize

the measure to make epochs more comparable. The terms

maxtx(t) and mintx(t) represent the maximum and minimum

value of the signal in the current epoch, respectively.

6) Mean of the Averaged Cross-Correlation Function
(MXC): The normalized cross-correlation function provides

a measure of synchrony between the wavelet band signals of

two channels (xi(t) and xj(t)) for different lags l between the

two signals [13]:

Cij(l) =
T

2L

| < xi(t), xj(t − l) > |√
< xi(t), xi(t) >< xj(t), xj(t) >

(6)
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where < . > denotes a vector dot product and |l| ≤ L is a

discrete lag with extremum values ±L. Absolute values were

taken so that Cij(l) is always between 0 and 1. For each

band, a single measurable for a channel was obtained by first

taking the mean correlation of each channel to all three other

channels in the same quadrant of the scalp (the quadrants being

left frontal, right frontal, left posterior, right posterior):

Ci(l) =
1
3

∑
k∈Qq

Cik(l). (7)

The final MXC measure was obtained by taking the mean of

Ci(l):

MXC =
1

2L + 1

l=L∑
l=−L

Ci(l). (8)

Ictal periods are usually more synchronized than interictal

periods and so the MXC takes on larger values during the

ictal periods.

7) Relative Gradient (RG): RG is based on a measure

used by [14] involving the absolute gradients between adjacent

points in the signal s(t) of a given channel band

g(t) =
∣∣∣∣s(t) − s(t − 1)

Δt

∣∣∣∣ , (9)

where Δt is the sample period of the given band. RG is defined

to be the mean of the absolute gradients in the current epoch

normalized by the standard deviation of the absolute gradients

in a 30s background period ending 1 min before the last epoch.

RG is a similar measure to RAA because it is defined

relative to background, however it is likely to be more sensitive

to higher frequency changes, since calculating the gradient (or

derivative) is a high-pass filtering process.

8) Relative Bounded Variation (RBV) and Relative Mean
of the Averaged Cross-Correlation Function (RXC): RBV and

RXC are defined in a similar way to RAA. The RBV is the

ratio of the BV (see section 2-C.5) in the current 2s epoch

to the BV in the background. The background is defined as

a 30s block ending 1 min before the last epoch. Similarly,

the RXC is the ratio of the MXC (see section 2-C.6) in the

current 2s epoch to the MXC in the background. RBV is

also similar to RAA since normalized curve length is highly

dependent on signal amplitude. RXC was considered because

MXC values varied with the background energy of the EEG,

and normalization of MXC relative to background should

offset this variation.

D. Feature Correlation Analysis

To determine which features were correlated, or complemen-

tary, the square of the Pearson correlation coefficient, also

known as the coefficient of determination, was calculated for

feature pairs calculated from both seizure and non-seizure

EEG data [15]:

r2
Xi,Yi

=
cov(Xi, Yi)2

σ2
Xi

σ2
Yi

. (10)

The random variables Xi and Yi represent an arbitrary pair

of feature vectors calculated from the wavelet band i of

the EEG pooled over all channels and over all patients for

either the seizure or non-seizure case. cov(Xi, Yi) is the

covariance matrix of Xi and Yi, and σXi and σYi are the

standard deviations of Xi and Yi respectively. The coefficient

of determination, r2
Xi,Yi

, takes a value close to zero when a

pair of features is de-correlated, and a value close to one if a

feature pair is either positively or negatively correlated. The

statistical significance of the correlations were determined by

transforming the correlation, rXi,Yi , to create a t statistic to

test the hypothesis of no correlation. The t statistic had n− 2
degrees of freedom, where n is the number of feature vectors,

and was defined as follows:

ti = rXi,Yi

√
n − 2

1 − r2
Xi,Yi

. (11)

Statistical tests were applied to determine if correlations were

significant for 95% confidence intervals.

As mentioned previously, combining features can improve

seizure detection and determining complementary feature

combinations is important to this end. However, if one com-

bines too many features it can lead to computational delays,

and minimizing computational requirements is important for

implantable seizure control devices which have limited com-

putational capacity. For these reasons here we consider a

correlation measure of combinations of only three features,

selected from the nine features. To obtain this three way

correlation measure the statistically significant coefficient of

determination values are first pooled across the wavelet bands

for either seizure or non-seizure data as follows:

RXY =
1
5

5∑
i=1

wir
2
Xi,Yi

, (12)

where i indexes the wavelet bands, and wi is 1 if rXi,Yi
is

significant for 95% confidence intervals, otherwise wi is 0.

The three way correlation for features X , Y and Z is then

given by:

CXY Z =
RXY + RXZ + RY Z

3
. (13)

3. RESULTS

Figure 1 shows the coefficient of determination of feature

pairs for seizure data and non-seizure data for the different

frequency bands. The pattern of correlation between features

is pretty consistent across the frequency bands, and also when

considering seizure versus non-seizure data. Previous work has

shown that RAA, RP and RG have high individual seizure

detection performance [16]. RAA and RG appear to be the

most correlated. During seizures RP and RG, RP and RAA

are weakly correlated, whereas during non-seizure periods are

less correlated. In general RAA, RP and RG were not very

correlated with the other features.

Table 1 lists the three way correlation values for combina-

tions of three features for seizure data. The combination of the

strong performing features RAA, RP and RG had the highest
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Fig. 1: The coefficient of determination of feature pairs for seizure
data (left column) and non-seizure data (right column), and for the
different frequency bands: 50-100, 25-50, 12-25, 6-12, and 3-6 Hz
(starting from the top to the bottom row, respectively). In each figure
the features have the following order on the x- and y-axes: RAA,
RSE, CVA, RP, BV, MXC, RG, RBV, RXC. The colorbar indicates
that the coefficient of determination takes on values between 0 and
1. Values were set to 0, if they were not statistically significant for
a 95% confidence interval.

three way correlation. This correlation is expected since these

features are all relative measures related to amplitude. The

combination of features RAA, RSE and CVA, which is incor-

porated by [3] into their seizure detector, had the 2nd lowest

three way correlation out of the 84 possible combinations. The

combination of RSE, CVA and RP had the lowest three way

correlation for seizure data.

TABLE 1: THREE WAY CORRELATION, CXY Z , VALUES FOR FEATURE

COMBINATIONS FOR seizure data. COMBINATIONS ARE LISTED IN DE-
SCENDING ORDER OF THREE WAY CORRELATION.

Combination CXY Z Combination CXY Z

RAA, RP, RG 0.136 CVA, RG, RBV 0.021
CVA, BV, RBV 0.133 RP, MXC, RBV 0.020
MXC, RBV, RXC 0.132 RP, BV, RXC 0.019
BV, MXC, RXC 0.131 RSE, RP, RG 0.018
BV, RBV, RXC 0.121 BV, RG, RXC 0.018
BV, MXC, RBV 0.120 RAA, BV, RXC 0.018
RAA, RSE, RG 0.109 RAA, MXC, RBV 0.018
RAA, RG, RXC 0.106 MXC, RG, RBV 0.018
RAA, CVA, RG 0.105 RP, RG, RXC 0.018
RAA, MXC, RG 0.105 RP, RG, RBV 0.017
RAA, RG, RBV 0.104 RAA, RSE, RP 0.017
RAA, BV, RG 0.104 RAA, RP, RXC 0.017
RSE, MXC, RXC 0.102 RP, MXC, RG 0.017
CVA, MXC, RXC 0.100 RP, BV, RG 0.017
RP, MXC, RXC 0.090 RAA, RP, RBV 0.017
MXC, RG, RXC 0.090 CVA, RP, RG 0.016
RAA, MXC, RXC 0.090 RAA, RP, MXC 0.016
RSE, BV, RBV 0.087 RAA, RP, BV 0.016
RP, BV, RBV 0.080 RAA, CVA, RP 0.016
RAA, BV, RBV 0.078 RSE, CVA, MXC 0.015
BV, RG, RBV 0.078 RSE, MXC, RG 0.010
CVA, BV, MXC 0.066 RAA, RSE, MXC 0.010
CVA, BV, RXC 0.057 RSE, CVA, RXC 0.009
CVA, RBV, RXC 0.051 RSE, RP, MXC 0.009
CVA, MXC, RBV 0.046 RSE, RG, RXC 0.008
RSE, CVA, BV 0.040 CVA, RP, MXC 0.008
RSE, BV, MXC 0.038 RAA, RSE, RXC 0.008
CVA, RP, BV 0.035 RSE, BV, RG 0.007
RAA, CVA, BV 0.035 RAA, CVA, MXC 0.007
CVA, BV, RG 0.035 CVA, MXC, RG 0.007
RSE, RBV, RXC 0.034 RAA, RSE, BV 0.007
RSE, MXC, RBV 0.030 RSE, RG, RBV 0.006
RP, RBV, RXC 0.027 RAA, RSE, RBV 0.006
RSE, BV, RXC 0.027 RAA, CVA, RXC 0.006
RAA, RBV, RXC 0.026 RSE, RP, BV 0.005
RP, BV, MXC 0.026 CVA, RG, RXC 0.005
RG, RBV, RXC 0.026 RSE, RP, RXC 0.005
RSE, CVA, RBV 0.025 CVA, RP, RXC 0.005
BV, MXC, RG 0.025 RSE, RP, RBV 0.005
RAA, BV, MXC 0.024 RSE, CVA, RG 0.003
CVA, RP, RBV 0.022 RAA, RSE, CVA 0.002
RAA, CVA, RBV 0.021 RSE, CVA, RP 0.001

Table 2 lists the three way correlation values for combina-

tions of three features for non-seizure data. The combination

of the strong performing features RAA, RP and RG no longer

had the highest three way correlation, instead CVA, BV, and

RBV were the most correlated. The combination of features

RAA, RSE and CVA, had a higher three way correlation for

non-seizure data and was the 28th lowest three way correlation

out of the 84 possible combinations. The combination of RSE,

RP and BV had the lowest three way correlation for non-

seizure data.

4. DISCUSSION

The main purpose of this work is to find feature combinations

with the lowest amount of correlation. Features with low
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TABLE 2: THREE WAY CORRELATION, CXY Z , VALUES FOR FEATURE

COMBINATIONS FOR non-seizure data. COMBINATIONS ARE LISTED IN DE-
SCENDING ORDER OF THREE WAY CORRELATION.

Combination CXY Z Combination CXY Z

CVA, BV, RBV 0.140 MXC, RG, RBV 0.013
MXC, RBV, RXC 0.110 RAA, MXC, RBV 0.013
BV, MXC, RXC 0.109 RP, MXC, RBV 0.011
BV, MXC, RBV 0.104 RAA, BV, RXC 0.010
BV, RBV, RXC 0.101 BV, RG, RXC 0.009
RAA, RSE, RG 0.099 RSE, BV, RXC 0.009
RAA, RG, RBV 0.092 RP, BV, RXC 0.009
RAA, CVA, RG 0.091 RSE, CVA, MXC 0.008
RAA, MXC, RG 0.091 RAA, RSE, CVA 0.007
RAA, BV, RG 0.091 RAA, RSE, MXC 0.006
RAA, RG, RXC 0.091 RAA, CVA, MXC 0.006
RAA, RP, RG 0.090 RAA, RSE, RBV 0.006
CVA, MXC, RXC 0.089 RSE, MXC, RG 0.006
RSE, MXC, RXC 0.084 CVA, MXC, RG 0.005
MXC, RG, RXC 0.083 RSE, RG, RBV 0.005
RAA, MXC, RXC 0.082 RAA, RSE, BV 0.005
RP, MXC, RXC 0.082 RSE, CVA, RG 0.005
RAA, BV, RBV 0.077 CVA, RP, MXC 0.005
BV, RG, RBV 0.076 RAA, RSE, RXC 0.005
RSE, BV, RBV 0.075 RAA, RSE, RP 0.004
RP, BV, RBV 0.075 RSE, RG, RXC 0.004
CVA, BV, MXC 0.067 RSE, RP, RG 0.004
CVA, BV, RXC 0.056 RSE, BV, RG 0.004
RAA, CVA, BV 0.046 RAA, CVA, RXC 0.003
RSE, CVA, BV 0.045 RSE, CVA, RXC 0.003
CVA, BV, RG 0.044 CVA, RG, RXC 0.002
CVA, RP, BV 0.044 CVA, RP, RXC 0.002
CVA, RBV, RXC 0.039 RSE, RP, MXC 0.001
CVA, MXC, RBV 0.037 RAA, CVA, RP 0.001
RAA, CVA, RBV 0.023 RAA, RP, RBV 0.001
RSE, CVA, RBV 0.022 RSE, CVA, RP 0.001
CVA, RG, RBV 0.021 RP, RG, RBV 0.001
CVA, RP, RBV 0.020 RAA, RP, BV 0.001
RSE, BV, MXC 0.019 RSE, RP, RBV 0.001
RAA, BV, MXC 0.018 RP, MXC, RG 0.001
RAA, RBV, RXC 0.018 RP, RG, RXC 0.000
BV, MXC, RG 0.018 RAA, RP, RXC 0.000
RG, RBV, RXC 0.017 RSE, RP, RXC 0.000
RP, BV, MXC 0.017 RAA, RP, MXC 0.000
RSE, RBV, RXC 0.017 RP, BV, RG 0.000
RP, RBV, RXC 0.016 CVA, RP, RG 0.000
RSE, MXC, RBV 0.014 RSE, RP, BV 0.000

correlation are complementary to one another and can be

combined into a seizure detector, where if one feature fails to

detect a seizure then hopefully one of the other complementary

features will manage to pick it up. The combinations with

the lowest correlation were RSE, CVA and RP, and RSE,

RP and BV for seizure and non-seizure data respectively.

Given that RP is a strong seizure detection feature, either

of these two combinations are likely to have decent seizure

detection performance provided that the other features have

some capacity to detect features. RSE and CVA have been

incorporated into a successful seizure detection algorithm [3],

and hence the combination of RSE, CVA and RP may provide

a strong seizure detector. This combination also had low

correlation for the non-seizure data.

It is interesting to note the the combination of the strong

individual features RAA, RP and RG had a three way

correlation of 0.136 and 0.090 for seizure and non-seizure

data, respectively. This difference indicates the possibility of

using the three way correlation to detect seizures. Estimating

correlation reliably usually requires large amounts of data and

this means large analysis windows are needed. Applying large

analysis windows to the EEG is not very practical because of

the non-stationarity of the EEG, and large windows may miss

short-time fluctuations relevant to seizure detection.

The combination of features RAA, RSE and CVA, which

have been incorporated into a commercial seizure detector [3],

had the 2nd and 28th lowest three way correlation out of the

84 possible combinations for the seizure and non-seizure data,

respectively. This partly explains why this feature combination

works well for seizure detection. The combination of CVA, RP

and RG, which involves the two strong performing features RP

and RG, had the 27th and 2nd lowest three way correlation

out of the 84 possible combinations for the seizure and non-

seizure data, respectively. This combination has been shown

to have strong seizure detection performance [16] and its low

degree of correlation may be a partial explanation for this.

5. CONCLUSION

This paper provides a step towards finding more complemen-

tary feature combinations that can be used to develop improved

seizure detectors where if one feature fails to detect a seizure

the other complementary features will hopefully manage to

detect it. Future work will involve seizure detection analysis of

the feature combinations with the lowest correlations presented

here in order to find a superior seizure detector.
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